Median unbiased forecasts for highly persistent autoregressive processes

نویسنده

  • Nikolay Gospodinov
چکیده

This paper considers the construction of median unbiased forecasts for near-integrated autoregressive processes. It derives the appropriately scaled limiting distribution of the deviation of the forecast from the true conditional mean. The dependence of the limiting distribution on nuisance parameters precludes the use of the standard asymptotic and bootstrap methods for bias correction. We propose a bootstrap method that generates samples backward in time and approximates the median function of the predictive distribution on a grid of values for the nuisance parameter. The method can be easily adapted to approximate any quantile of the conditional predictive distribution. c © 2002 Elsevier Science B.V. All rights reserved. JEL classi#cation: C12; C15; C22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting autoregressive time series in the presence of deterministic components

This paper studies the error in forecasting an autoregressive process with a deterministic component. We show that when the data are strongly serially correlated, forecasts based on a model that detrends the data using OLS before estimating the autoregressive parameters are much less precise than those based on an autoregression that includes the deterministic components, and the asymptotic dis...

متن کامل

Median-Unbiased Estimation of Higher Order Autoregressive/Unit Root Processes and Autocorrelation Consistent Covariance Estimation in a Money Demand Model

It is shown that the Newey-West (1987) Heteroskedasticity and Autocorrelation Consistent (HAC) covariance matrix estimator can greatly understate the standard errors of OLS regression coefficient estimates in finite samples, and therefore comparably overstate t-statistics. Although the bias vanishes in infinite samples and is tolerable in samples as small as 10, it can lead to t-statistics that...

متن کامل

Bias correction of OLSE in the regression model with lagged dependent variables

It is well known that the ordinary least-squares estimates (OLSE) of autoregressive models are biased in small sample. In this paper, an attempt is made to obtain the unbiased estimates in the sense of median or mean. Using Monte Carlo simulation techniques, we extend the median-unbiased estimator proposed by Andrews (1993, Econometrica 61 (1), 139–165) to the higher-order autoregressive proces...

متن کامل

Nearly Weighted Risk Minimal Unbiased Estimation∗

Consider a non-standard parametric estimation problem, such as the estimation of the AR(1) coefficient close to the unit root. We develop a numerical algorithm that determines an estimator that is nearly (mean or median) unbiased, and among all such estimators, comes close to minimizing a weighted average risk criterion. We demonstrate the usefulness of our generic approach by also applying it ...

متن کامل

Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks∗

This paper develops a theoretical framework for the analysis of smallsample properties of forecasts from general autoregressive models under structural breaks. Finite-sample results for the mean squared forecast error of one-step ahead forecasts are derived, both conditionally and unconditionally, and numerical results for different types of break specifications are presented. It is established...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002